135 research outputs found

    Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics

    Get PDF
    BACKGROUND: The rhizosphere is the microbe-rich zone around plant roots and is a key determinant of the biosphere's productivity. Comparative transcriptomics was used to investigate general and plant-specific adaptations during rhizosphere colonization. Rhizobium leguminosarum biovar viciae was grown in the rhizospheres of pea (its legume nodulation host), alfalfa (a non-host legume) and sugar beet (non-legume). Gene expression data were compared to metabolic and transportome maps to understand adaptation to the rhizosphere. RESULTS: Carbon metabolism was dominated by organic acids, with a strong bias towards aromatic amino acids, C1 and C2 compounds. This was confirmed by induction of the glyoxylate cycle required for C2 metabolism and gluconeogenesis in all rhizospheres. Gluconeogenesis is repressed in R. leguminosarum by sugars, suggesting that although numerous sugar and putative complex carbohydrate transport systems are induced in the rhizosphere, they are less important carbon sources than organic acids. A common core of rhizosphere-induced genes was identified, of which 66% are of unknown function. Many genes were induced in the rhizosphere of the legumes, but not sugar beet, and several were plant specific. The plasmid pRL8 can be considered pea rhizosphere specific, enabling adaptation of R. leguminosarum to its host. Mutation of many of the up-regulated genes reduced competitiveness for pea rhizosphere colonization, while two genes specifically up-regulated in the pea rhizosphere reduced colonization of the pea but not alfalfa rhizosphere. CONCLUSIONS: Comparative transcriptome analysis has enabled differentiation between factors conserved across plants for rhizosphere colonization as well as identification of exquisite specific adaptation to host plants

    VZV in biopsy-positive and -negative giant cell arteritis: Analysis of 100+ temporal arteries

    Get PDF
    Objective: Varicella-zoster virus (VZV) infection may trigger the inflammatory cascade that characterizes giant cell arteritis (GCA). Methods: Formalin-fixed, paraffin-embedded GCA-positive temporal artery (TA) biopsies (50 sections/TA) including adjacent skeletal muscle and normal TAs obtained postmortem from subjects >50 years of age were examined by immunohistochemistry for presence and distribution of VZV antigen and by ultrastructural examination for virions. Adjacent regions were examined by hematoxylin & eosin staining. VZV antigen–positive slides were analyzed by PCR for VZV DNA. Results: VZV antigen was found in 61/82 (74%) GCA-positive TAs compared with 1/13 (8%) normal TAs (p < 0.0001, relative risk 9.67, 95% confidence interval 1.46, 63.69). Most GCA-positive TAs contained viral antigen in skip areas. VZV antigen was present mostly in adventitia, followed by media and intima. VZV antigen was found in 12/32 (38%) skeletal muscles adjacent to VZV antigen–positive TAs. Despite formalin fixation, VZV DNA was detected in 18/45 (40%) GCA-positive VZV antigen–positive TAs, in 6/10 (60%) VZV antigen–positive skeletal muscles, and in one VZV antigen–positive normal TA. Varicella-zoster virions were found in a GCA-positive TA. In sections adjacent to those containing VZV, GCA pathology was seen in 89% of GCA-positive TAs but in none of 18 adjacent sections from normal TAs. Conclusions: Most GCA-positive TAs contained VZV in skip areas that correlated with adjacent GCA pathology, supporting the hypothesis that VZV triggers GCA immunopathology. Antiviral treatment may confer additional benefit to patients with GCA treated with corticosteroids, although the optimal antiviral regimen remains to be determined

    Fostering Program Comprehension in Novice Programmers - Learning Activities and Learning Trajectories

    Get PDF
    This working group asserts that Program Comprehension (ProgComp) plays a critical part in the process of writing programs. For example, this paper is written from a basic draft that was edited and revised until it clearly presented our idea. Similarly, a program is written incrementally, with each step tested, debugged and extended until the program achieves its goal. Novice programmers should develop program comprehension skills as they learn to code so that they are able both to read and reason about code created by others, and to reflect on their code when writing, debugging or extending it. To foster such competencies our group identified two main goals: (g1) to collect and define learning activities that explicitly address key components of program comprehension and (g2) to define tentative theoretical learning trajectories that will guide teachers as they select and sequence those learning activities in their CS0/CS1/CS2 or K-12 courses. The WG has completed the first goal and laid down a strong foundation towards the second goal as presented in this report. After a thorough literature review, a detailed description of the Block Model is provided, as this model has been used with a dual purpose, to classify and present an extensive list of ProgComp tasks, and to describe a possible learning trajectory for a complex task, covering different cells of the Block Model matrix. The latter is intended to help instructors to decompose complex tasks and identify which aspects of ProgComp are being fostered

    Exploiting differential Wnt target gene expression to generate a molecular biomarker for colorectal cancer stratification

    Get PDF
    OBJECTIVE Pathological Wnt pathway activation is a conserved hallmark of colorectal cancer. Wnt-activating mutations can be divided into: i) ligand-independent (LI) alterations in intracellular signal transduction proteins (, β-catenin), causing constitutive pathway activation and ii) ligand-dependent (LD) mutations affecting the synergistic R-Spondin axis (, -fusions) acting through amplification of endogenous Wnt signal transmembrane transduction. Our aim was to exploit differential Wnt target gene expression to generate a mutation-agnostic biomarker for LD tumours. DESIGN We undertook harmonised multi-omic analysis of discovery (n=684) and validation cohorts (n=578) of colorectal tumours collated from publicly available data and the Stratification in Colorectal Cancer Consortium. We used mutation data to establish molecular ground truth and subdivide lesions into LI/LD tumour subsets. We contrasted transcriptional, methylation, morphological and clinical characteristics between groups. RESULTS Wnt disrupting mutations were mutually exclusive. Desmoplastic stromal upregulation of may compensate for absence of epithelial mutation in a subset of stromal-rich tumours. Key Wnt negative regulator genes were differentially expressed between LD/LI tumours, with targeted hypermethylation of some genes (, ) occurring even in CIMP-negative LD cancers. mRNA expression was used as a discriminatory molecular biomarker to distinguish LD/LI tumours (area under the curve >0.93). CONCLUSIONS Epigenetic suppression of appropriate Wnt negative feedback loops is selectively advantageous in LD tumours and differential expression in LD/LI lesions can be exploited as a molecular biomarker. Distinguishing between LD/LI tumour types is important; patients with LD tumours retain sensitivity to Wnt ligand inhibition and may be stratified at diagnosis to clinical trials of Porcupine inhibitors

    Emerging Technologies for the Detection of Rabies Virus: Challenges and Hopes in the 21st Century

    Get PDF
    The diagnosis of rabies is routinely based on clinical and epidemiological information, especially when exposures are reported in rabies-endemic countries. Diagnostic tests using conventional assays that appear to be negative, even when undertaken late in the disease and despite the clinical diagnosis, have a tendency, at times, to be unreliable. These tests are rarely optimal and entirely dependent on the nature and quality of the sample supplied. In the course of the past three decades, the application of molecular biology has aided in the development of tests that result in a more rapid detection of rabies virus. These tests enable viral strain identification from clinical specimens. Currently, there are a number of molecular tests that can be used to complement conventional tests in rabies diagnosis. Indeed the challenges in the 21st century for the development of rabies diagnostics are not of a technical nature; these tests are available now. The challenges in the 21st century for diagnostic test developers are two-fold: firstly, to achieve internationally accepted validation of a test that will then lead to its acceptance by organisations globally. Secondly, the areas of the world where such tests are needed are mainly in developing regions where financial and logistical barriers prevent their implementation. Although developing countries with a poor healthcare infrastructure recognise that molecular-based diagnostic assays will be unaffordable for routine use, the cost/benefit ratio should still be measured. Adoption of rapid and affordable rabies diagnostic tests for use in developing countries highlights the importance of sharing and transferring technology through laboratory twinning between the developed and the developing countries. Importantly for developing countries, the benefit of molecular methods as tools is the capability for a differential diagnosis of human diseases that present with similar clinical symptoms. Antemortem testing for human rabies is now possible using molecular techniques. These barriers are not insurmountable and it is our expectation that if such tests are accepted and implemented where they are most needed, they will provide substantial improvements for rabies diagnosis and surveillance. The advent of molecular biology and new technological initiatives that combine advances in biology with other disciplines will support the development of techniques capable of high throughput testing with a low turnaround time for rabies diagnosis

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex

    Diversity and ethics in trauma and acute care surgery teams: results from an international survey

    Get PDF
    Background Investigating the context of trauma and acute care surgery, the article aims at understanding the factors that can enhance some ethical aspects, namely the importance of patient consent, the perceptiveness of the ethical role of the trauma leader, and the perceived importance of ethics as an educational subject. Methods The article employs an international questionnaire promoted by the World Society of Emergency Surgery. Results Through the analysis of 402 fully filled questionnaires by surgeons from 72 different countries, the three main ethical topics are investigated through the lens of gender, membership of an academic or non-academic institution, an official trauma team, and a diverse group. In general terms, results highlight greater attention paid by surgeons belonging to academic institutions, official trauma teams, and diverse groups. Conclusions Our results underline that some organizational factors (e.g., the fact that the team belongs to a university context or is more diverse) might lead to the development of a higher sensibility on ethical matters. Embracing cultural diversity forces trauma teams to deal with different mindsets. Organizations should, therefore, consider those elements in defining their organizational procedures. Level of evidence Trauma and acute care teams work under tremendous pressure and complex circumstances, with their members needing to make ethical decisions quickly. The international survey allowed to shed light on how team assembly decisions might represent an opportunity to coordinate team member actions and increase performance

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF
    corecore